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ABSTRACT

Prognostics deals with the prediction of the end of life (EOL)
of a system. EOL is a random variable, due to the presence of
process noise and uncertainty in the future inputs to the sys-
tem. Prognostics algorithms must account for this inherent
uncertainty. In addition, these algorithms never know exactly
the state of the system at the desired time of prediction, or
the exact model describing the future evolution of the system,
accumulating additional uncertainty into the predicted EOL.
Prediction algorithms that do not account for these sources of
uncertainty are misrepresenting the EOL and can lead to poor
decisions based on their results. In this paper, we explore the
impact of uncertainty in the prediction problem. We develop
a general model-based prediction algorithm that incorporates
these sources of uncertainty, and propose a novel approach
to efficiently handle uncertainty in the future input trajecto-
ries of a system by using the unscented transform. Using
this approach, we are not only able to reduce the computa-
tional load but also estimate the bounds of uncertainty in a
deterministic manner, which can be useful to consider during
decision-making. Using a lithium-ion battery as a case study,
we perform several simulation-based experiments to explore
these issues, and validate the overall approach using experi-
mental data from a battery testbed.

1. INTRODUCTION

Prognostics deals with the prediction of the end of life (EOL)
and remaining useful life (RUL) of components, subsystems,
and systems. At its core, prognostics is a prediction prob-
lem. But, the future evolution of the system is a random
process due to (i) process noise, and (ii) uncertainty in the
future inputs to the system. In practice, these two sources
of uncertainty cannot be avoided and thus EOL and RUL
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are random variables. The prognostics algorithm itself in-
troduces additional uncertainty because, in general, (i) it does
not know exactly the state of the system at the time of pre-
diction, (ii) it does not know exactly the description of the
process noise, (iii) it does not know exactly the description
of the future input uncertainty, and (iv) it does not know
exactly the model of the future system behavior. All these
sources of uncertainty contribute to the difficulty of the prog-
nostics problem (Sankararaman, Ling, Shantz, & Mahadevan,
2011). While uncertainty cannot be eliminated from prog-
nostics, an accurate assessment can be crucial in decision-
making. Making decisions based on uncertain information
requires characterizing the uncertainty itself to tune the risk
level as needed in a particular application. In safety-critical
systems it is of even higher importance, which is reflected in
the fact that verification, validation, and certification proto-
cols in the aerospace domain require provably deterministic
and bounded systems.

Although the presence of prediction uncertainty is clearly
a practical issue, only a few works have explored it.
In (Sankararaman et al., 2011), the authors examine the vari-
ous sources of uncertainty in fatigue crack growth prognostics
and analyze their effects in an offline setting. In dealing with
input uncertainty, future input trajectories are constructed as
sequential blocks of constant-amplitude loading, and such
trajectories are sampled in the prediction algorithm. In a
similar approach applied to batteries in an unmanned aerial
vehicle (UAV), in (Saha et al., 2012) the authors determine
statistics of the battery loading for typical UAV maneuvers
based on past flight data, and construct future input trajecto-
ries as constrained sequences of flight maneuvers. In (Luo et
al., 2008), constant loading is assumed for a vehicle suspen-
sion system, and predictions are made for a weighted set of
three different loading values. The approach of (Edwards et
al., 2010) also considers constant loading, and several uncer-
tainty measures are defined that are then used within a frame-
work for system life extension through actions that modify
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the system loading.

In this paper, we develop a general framework within the
model-based prognostics paradigm for representing arbitrar-
ily complex future input trajectories, and develop a general
sample-based algorithm for predicting EOL and RUL that ac-
counts for the sources of uncertainty in the prediction process.
In particular, we introduce the unscented transform (Julier &
Uhlmann, 1997), which predicts the mean and covariance of
a random variable passed through a nonlinear function, as
a method to efficiently sample from future input trajectories
while still maintaining the statistics of the end result. This ap-
proach offers substantial computational savings as compared
to a semi-exhaustive random sampling approach. Addition-
ally, we show that since the UT allows sampling in a deter-
ministic manner, and in this particular case where uncertainty
in inputs is assumed to be uniformly distributed, we are able
to bound the RUL predictions. Therefore, using the UT we
realize a threefold benefit, (i) obtaining bounds for the predic-
tion uncertainty, (ii) obtaining bounds in a deterministic man-
ner, and (iii) keeping the statistical information intact with a
considerably reduced computational burden as compared to
traditional sampling approaches. Using a lithium-ion battery
as a case study, we analyze the impact of uncertainty and var-
ious performance trade-offs of the prediction algorithm under
several cases, and demonstrate and validate the approach with
experimental data from a battery testbed.

The paper is organized as follows. Section 2 formulates the
prognostics problem and describes the sources of uncertainty.
Section 3 develops the general prediction algorithm and its
different instantiations. Section 4 presents the battery case
study and provides results using both experimental and simu-
lated data. Section 5 concludes the paper.

2. PROGNOSTICS APPROACH

This section first formulates the prognostics problem. It then
describes how uncertainty arises in prognostics, and exam-
ines the implications on prognostics algorithms. Finally, it
provides an architecture for model-based prognostics.

2.1. Problem Formulation

The goal of prognostics is the prediction of the EOL and/or
RUL of a system. We assume the system model may be gen-
erally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
unknown parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state equa-
tion, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is the

measurement noise vector, and h is the output equation.1

Prognostics and health management is concerned with system
performance that lies outside a given region of acceptable be-
havior. The desired performance is expressed through a set of
nc constraints, CEOL = {ci}nci=1, where ci : Rnx × Rnθ ×
Rnu → B maps a given point in the joint state-parameter
space given the current inputs, (x(t),θ(t),u(t)), to the
Boolean domain B , [0, 1], where ci(x(t),θ(t),u(t)) = 1 if
the constraint is satisfied, and 0 otherwise.

These individual constraints may be combined into a single
threshold function TEOL : Rnx × Rnθ × Rnu → B, defined
as

TEOL(x(t),θ(t),u(t)) ={
1, 0 ∈ {ci(x(t),θ(t),u(t))}nci=1

0, otherwise.

TEOL evaluates to 1 when any of the constraints are violated.
EOL is then defined as the earliest time point at which this
occurs:

EOL(tP ) ,

inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1},

RUL is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

2.2. Prediction Uncertainty

The above definitions of EOL and RUL are for their exact
values, i.e., the system takes some path out of many possible
paths through the state space until EOL. The actual path the
system will take cannot be known in advance because the sys-
tem evolution is a random process, therefore, EOL and RUL
at any prediction time tP < EOL, are actually random vari-
ables. System evolution is random due to the process noise
v(t) and because u(t) for t > tP is never known exactly.
Since EOL is a function of (x(tP ),θ(tP )) and u(t), which
are all random variables, EOL (and RUL) must also be a ran-
dom variable. This uncertainty is inherent to the system itself
and cannot be avoided. Note that as t approaches EOL, the
variability in the actual EOL will naturally reduce, simply be-
cause EOL− t becomes smaller.

The goal of a prognostics algorithm, then, is to compute the
true distribution of the EOL and RUL. A decision that is made
based on a misrepresentation of this true distribution could
have a significant impact, especially if the true variability is
underestimated. It is therefore critical that a prognostics al-
gorithm comes as close to this true distribution as possible.

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.
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Figure 1. Model-based prognostics architecture.

However, additional uncertainty is also introduced by the
prognostics algorithm itself. In order to make a prediction,
the state of the system at the time of prediction must be
known. At best, only a probability distribution can be esti-
mated since (i) the system state may not be directly measured
and, (ii) even if it is, there is sensor noise, (iii) the initial state
of the system is not known exactly, (iv) the system model
is not known exactly, and (v) there is process noise. Even if
the system state is known exactly, uncertainty is introduced in
the prediction process since, in general, (i) the model used for
prediction is not known exactly, (ii) the correct representation
of process noise is not known exactly, and (iii) the correct rep-
resentation of the space of possible future input trajectories is
not known exactly. Due to these additional sources of uncer-
tainty inherent to the prognostics algorithm, the uncertainty
in the predicted EOL/RUL will nominally be larger than the
true variability in EOL/RUL.

The uncertainty inherent to the system cannot be eliminated,
and neither can the uncertainty inherent to the algorithm.
However, the uncertainty associated with the algorithm can
be limited by using the best known model including the best
known representation of the process noise, and by constrain-
ing the space of possible future input trajectories as much as
possible and representing the associated probability distribu-
tion as accurately as possible. The potential trajectories of
u(t) for t ≥ tP depend on the system being monitored and
can, in general, take on any number of arbitrary signals. We
denote the space of possible future input trajectories as UtP .
A single trajectory in the set UtP is denoted as UtP , and de-
fines the values of u(t) for all t ≥ tP . Each possible trajec-
tory has a certain probability of occurring in the real system,
and so this is defined by a probability distribution p(UtP ). In
practice, it is entirely possible that this exact distribution is
unknown and must be approximated.

2.3. Prognostics Architecture

To predict EOL/RUL, first an initial state to use for the pre-
diction must be determined. In the model-based paradigm,
this is referred to as the estimation problem, and requires de-
termining a joint state-parameter estimate p(x(t),θ(t)|y0:t)
based on the history of observations up to time t, y0:t.
The prediction problem is to determine, using this estimate,
EOL and RUL probability distributions, p(EOLtP |y0:tP )

and p(RULtP |y0:tP ).

The prognostics architecture is shown in Fig. 1 (Daigle &
Goebel, 2011). In discrete time k, the system is provided with
inputs uk and provides measured outputs yk. The estimation
module uses this information, along with the system model,
to compute an estimate p(xk,θk|y0:k).2 The prediction mod-
ule uses the joint state-parameter distribution and the system
model, along with hypothesized future inputs, to compute
EOL and RUL as probability distributions p(EOLkP |y0:kP )
and p(RULkP |y0:kP ) at given prediction times kP .

3. PREDICTION

Prediction is initiated at a given time of prediction
kP using the current joint state-parameter estimate,
p(xkP ,θkP |y0:kP ). Approaches to determine this estimate
are reviewed in (Daigle et al., 2012) and will not be de-
scribed here. The goal is to compute p(EOLkP |y0:kP ) and
p(RULkP |y0:kP ). The representation of p(xkP ,θkP |y0:kP )
is determined by the algorithm used for the estimation step.
In any case, here, we assume it is given as a set of weighted
samples {(xix

kP
,θix

kP
), wix

x,kP
}. In the case of the unscented

Kalman filter (Julier & Uhlmann, 1997, 2004) and the parti-
cle filter (Arulampalam et al., 2002), the distribution is pro-
vided in this format, otherwise, the provided distribution can
be sampled.

Here, we follow a sample-based approach (as opposed to
analytical methods) to the prediction problem to incorpo-
rate the uncertainty (Sankararaman et al., 2011), in which
each sample is simulated to EOL. The approach is shown
as Algorithm 1. For each of the Nx samples of the state-
parameter distribution, we sample from the input distribu-
tion, UkP , Nu future input trajectories (where a single trajec-
tory UkP , {ukP ,ukP+1, . . .}) with weights wu,kP , and for
each of these trajectories, simulate Nv trajectories with pro-
cess noise (lines 10–14). At the end, we obtain a weighted
set of EOL predictions for each of these simulations, total-
ingNx×Nu×Nv , i.e., {EOLj

kP
, wj

kP
}Nx×Nu×Nv
j=1 (lines 15

and 16).

In the algorithm, line 11 samples the next state from the prior
probability distribution. Effectively, this is implemented by
2Estimation does not need to be performed by the prognoser if it is pro-
vided by some other module, such as a diagnoser (Roychoudhury & Daigle,
2011).
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Algorithm 1 EOL Prediction with Uncertainty
1: Inputs: {(xix

kP
,θix

kP
), wix

x,kP
}Nxix=1, Nu, Nv

2: Outputs: {EOLj
kP

, wj
kP
}Nx×Nu×Nv
j=1

3: {Uiu
kP

, wiu
u,kP
}Nuiu=1 ∼ p(UkP )

4: for ix = 1 to Nx do
5: for iu = 1 to Nu do
6: for iv = 1 to Nv do
7: j ← (ix, iu, iv)
8: k ← kP
9: xj

k ← xj
kP

10: while TEOL(x
j
k,θ

j
k,U

iu
kP

(k)) = 0 do
11: xj

k+1 ∼ p(xk+1|xj
k,θ

j
kP

,Uj
kP

(k))
12: k ← k + 1
13: xj

k ← xj
k+1

14: end while
15: EOLj

kP
← k

16: wj
kP
← wix

x,kP
× wiu

u,kP
/Nv

17: end for
18: end for
19: end for

sampling the process noise and executing the state equation
with that process noise. Each of these trajectories individu-
ally are set to have equal weight (1/Nv), and a statistically
meaningful result can only be obtained by sampling a suffi-
cient number of times. The longer the time to EOL, the more
of an effect process noise will have and the more samples
may be necessary to accurately capture the statistics. If de-
sired, process noise can be set to zero.

Line 3 in the algorithm samples the future input trajectories.
What this space looks like is highly dependent on the under-
lying application, and how to sample this space depends on
what the space looks like. It is up to the modeler to define this
space and its probability distribution. There are a few simple
approaches to take that are generally applicable. One way to
handle this is to define a family of parameterized functions
that define u(t) for all t ≥ tP . For example, let u(t) = p,
where p is an unknown value drawn from a known (or as-
sumed) distribution. To sample an input trajectory one needs
only to sample a value for p. Or, let u(t) = p1t+ p2t

2. Here,
an input trajectory is sampled by sampling values for p1 and
p2. More complicated functions may also be defined, and as
long as they are parameterized then it is easy to sample such
functions. Another general approach is to define the input as
a set of blocks where within each block the input is constant,
such as in (Sankararaman et al., 2011; Saha et al., 2012). One
must then sample how long the next block will last and at
what magnitude it will be.

The computational complexity of the algorithm is mainly a
function of the number of unique samples (Nx ×Nu ×Nv).
Secondary to this is how long each sample takes to simulate
to EOL. Samples with higher rates of of damage progression
(e.g., due to increased loading) will simulate faster than those
with lower rates of progression.

The general algorithm presented here can be instantiated in
different ways, depending on how the future input trajectories
are sampled (line 3). In the following subsections we describe
different sampling methods.

3.1. Exhaustive Sampling

If the input trajectory space UkP is finite, then it is possible
to do predictions over the entire space. This is limited by
the imposed computational requirements, because even if the
space is finite, the number of discrete elements may be too
large. In this case the sampling would be deterministic, so
repeated executions would always get the same results.

3.2. Random Sampling

If the input trajectory space is infinitely large or finite but too
large for exhaustive sampling, then random sampling may
be used to obtain a number of sufficient samples. Because
the process is stochastic, the results will be nondeterministic,
which could have a significant impact on performance if too
few samples are drawn. Further, repeated executions would
obtain different results, which could make validation of the
algorithm difficult. However, it is the most generally applica-
ble approach.

3.3. Sampling with the Unscented Transform

As an alternative to random sampling, nonexhaustive deter-
ministic sampling can also be performed. One method is to
use the unscented transform (UT). The UT takes a random
variable x ∈ Rnx , with mean x̄ and covariance Pxx, that is
related to a second random variable y ∈ Rny by some func-
tion y = g(x), and computes the mean ȳ and covariance
Pyy with high accuracy using a minimal set of deterministi-
cally selected weighted samples, called sigma points (Julier &
Uhlmann, 1997). The number of sigma points is only linear in
the dimension of the random variable, and so the statistics of
the transformed random variable, i.e., mean and covariance,
can be computed much more efficiently than by random sam-
pling.3

Here, X i denotes the ith sigma point from x and wi denotes
its weight. The sigma points are always chosen such that the
mean and covariance match those of the original distribution,
x̄ and Pxx. Each sigma point is passed through g to obtain
new sigma points Y , i.e.,

Yi = g(X i)

3Versions of the unscented transform also exist that compute also higher-
order moments like skew (Julier, 1998).
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with mean and covariance calculated as

ȳ =
∑
i

wiYi

Pyy =
∑
i

wi(Yi − ȳ)(Yi − ȳ)T .

In this paper, we use the symmetric unscented transform, in
which 2nx +1 sigma points are symmetrically selected about
the mean according to (Julier & Uhlmann, 2004):

wi =


κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

X i =


x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i
,i = nx+1, . . . , 2nx,

where
(√

(nx + κ)Pxx

)i
refers to the ith column of the ma-

trix square root of (nx + κ)Pxx. Note that the required num-
ber of samples is only linear in the size of the state space.
Here, κ is a free parameter that can be used to tune higher
order moments of the distribution. If x is assumed Gaus-
sian, then selecting κ = 3 − nx is recommended (Julier &
Uhlmann, 1997). Note that with the UT, weights may be neg-
ative, and are not to be directly interpreted as probabilities.

If we consider the random variable in this case to be a rep-
resentation of our input space, then the UT can be used to
sample the space of input trajectories. Here, the simulation to
EOL is the nonlinear transformation, as in (Daigle & Goebel,
2010). A representation of the input space for this frame-
work is required. If the future input trajectories are defined
by parameterized functions, where the function parameters
are themselves sampled from some distribution, then the in-
put space is defined by these parameters and the UT can be
used to sample from this parameter space. The number of
samples would be linear in the number of parameters (as this
defines the state space for the UT). By using the UT to sam-
ple this parameter space, in effect we obtain representative
samples of the input trajectory space.

If the input space cannot be transformed to a representation
amenable to the UT, then this approach cannot be used. Such
cases, however, may not appear often in practice since this
would imply that it is difficult for the modeler to define the
input space in the first place. That is, an easy and practical
way to define the input trajectory space is by sampling a finite
set of parameters that define a particular input trajectory.

Figure 2. Battery equivalent circuit.

4. CASE STUDY

We select a lithium-ion battery as a case study on which to
demonstrate and validate our approach. We first present the
battery model. We then apply the approach to experimental
data and demonstrate the impact of prognostics uncertainty.
We then present a number of simulation experiments to more
systematically explore these issues.

4.1. Modeling

The battery model is based on an electrical circuit equiva-
lent shown in Fig. 2, similar to models presented in (Chen
& Rincon-Mora, 2006; Barsali & Ceraolo, 2002; Ceraolo,
2000). The large capacitance Cb holds the charge qb of the
battery. The RCP -CCP pair captures the major nonlinear
voltage drop due to concentration polarization, Rs captures
the so-called I-R drop, and Rp models the parasitic resistance
that accounts for self-discharge. This simple battery model is
enough to capture the major dynamics of the battery, but ig-
nores temperature effects and other minor battery processes.

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

,

where qb is the current charge in the battery (related to Cb),
qmax is the maximum possible charge, and Cmax is the max-
imum possible battery capacity (i.e., nominally, its rated ca-
pacity). The concentration polarization resistance is a nonlin-
ear function of SOC:

RCP = RCP0 +RCP1 expRCP2(1− SOC),

where RCP0, RCP1, and RCP1 are empirical parameters.
The resistance, and, hence, the voltage drop, increases ex-
ponentially as SOC decreases (Saha et al., 2012).

Voltage drops across the individual circuit elements are given
by

Vb = qb/Cb

VCP = qCP /CCP

Vp = Vb − VCP ,

where qCP is the charge associated with the capacitance

5
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Parameter Value
Cb 9844
Rs 0.143014
Rp 500
CCP 70.3767
RCP0 0.019829
RCP1 3.68606× 10−14

RCP2 31.9213
qmax 41400
Cmax 6900

Table 1. Battery Model Parameters
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Figure 3. Battery model comparison with experimental data.

CCP . The terminal voltage of the battery is

V = Vb − VCP −Rsi,

where i is the battery current at the terminals. Currents asso-
ciated with the individual circuit elements are given by

ip = Vp/Rp

ib = ip + i

iCP = ib − VCP /RCP .

The charges are then governed by

q̇b = −ib
q̇CP = iCP

We are interested in predicting end-of-discharge as defined
by a voltage threshold VEOD. So, CEOL consists of only one
constraint:

c1 : V > VEOD.

From experimental data of battery discharges, we have iden-
tified the parameters of the battery model through model fit-
ting, and their values are shown in Table 1. A comparison of
measured and predicted behavior for known current inputs is
shown in Fig. 3. The associated inputs are shown in Fig. 4.
Clearly, the model is not perfect, so prognosis will have to
account for the model uncertainty.
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Figure 4. Battery current inputs.

4.2. Experimental Results

To demonstrate and validate the approach, we apply our prog-
nostics algorithms to the experimental data given in Fig. 3.
For state estimation, we use the unscented Kalman filter
(UKF) (Julier & Uhlmann, 1997; Daigle et al., 2012). Here,
we use the UKF since the model is nonlinear and generally
performs better (and is easier to apply) than the extended
Kalman filter (Julier & Uhlmann, 1997). The model uncer-
tainty is captured through process noise, represented using
normal distributions with zero mean. Sensor noise is gener-
ally very small but is also assumed to be zero-mean Gaussian.

The battery current is viewed as an input to the model, and
its future values must be hypothesized. First, we assume that
the future inputs are known exactly (we use the exact load
profile available from the experimental data shown in Fig. 4),
and that there is no process noise. The RUL predictions ver-
sus time are shown in Fig. 5. The predictions are shown
against the true RUL (denoted as RUL∗) along with an accu-
racy cone defined by α = 0.15. Predictions are made every
100 s. Here, we see that the predictions are quite accurate
and remain within 15% of the true RUL until about 2500 s.
The UKF can partially correct for the model uncertainty, but
towards the end of the discharge the error cannot be fully cor-
rected and the relative accuracy is reduced, due to the high
sensitivity to the final voltage drop. The only uncertainty cap-
tured by these predictions is that in the state estimate, which
is very small (so is not visible in the figure). Clearly, these
predictions do not capture the true uncertainty so would be
incorrect to use for decision-making.

Process noise must be correctly represented in order to yield
usable results. Fig. 6 shows the RUL predictions versus time
in this case, using Nv = 100. Now, we see that the uncer-
tainty represented in the prediction covers the decrease in ac-
curacy observed towards the end of the discharge, i.e., the true
RUL is now contained within the uncertainty bounds.

If the future inputs are not known, then some assumption
must be made about what they look like. First, we assume
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Figure 5. Prediction performance assuming known future in-
put trajectory and no process noise with α = 0.15.
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Figure 6. Prediction performance assuming known future in-
put trajectory and 100 process noise samples with α = 0.15.

just a constant current of 2.25 A, which is the average current
drawn during the actual experiment (shown as the dashed line
in Fig. 4). Here, we assume there is no process noise. The re-
sults are shown in Fig. 7. Clearly, assuming the average cur-
rent results in a significant performance degradation. Around
1000 s, the average current until discharge is lower than hy-
pothesized, so RUL is underestimated. Around 2500 s, the
average current until discharge is higher than hypothesized,
so RUL is overestimated. It is apparent that the RUL predic-
tion is very sensitive to the uncertainty in the future inputs.
In this case, the predictions are much more sensitive to input
uncertainty than model uncertainty, since the model itself is
more sensitive to changes in input than to the added process
noise.
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Figure 7. Prediction performance assuming average future
input trajectory and no process noise with α = 0.15.

Instead of assuming a single possible future input trajectory,
we now consider multiple trajectories. At each prediction
step, we assume the future current is drawn from a uniform
distribution between 1 and 4 A and remains constant for the
remainder of the discharge. Looking at Fig. 4, the current
does not remain constant, but serves as a reasonable assump-
tion for prediction purposes, i.e., rather than assuming vari-
able discharge currents we assume constant discharge cur-
rents within the range of possible currents, which is much
easier to sample from and still captures the best- and worst-
case inputs. Fig. 8 shows the results using 10 samples and
Fig. 9 shows the results using 100 samples. The uncertainty
in the RUL predictions now is much more accurately rep-
resented. Clearly, the more samples used, the smoother the
predictions and the better the description of the uncertainty.
It is also clear here that the uncertainty in the future inputs
causes about an order of magnitude more spread in the RUL
predictions than the uncertainty associated with the process
noise, comparing the figures (specifically, relative median ab-
solute deviation averaged 6.2% in Fig. 6 and 27.9% in Fig. 8).
Therefore, it would be acceptable to drop the process noise,
which would save also on the required amount of computa-
tion.

Further improvements in computation can be achieved by us-
ing the unscented transform to select input trajectories. In this
case, the future input trajectories are parameterized by a sin-
gle number, representing the future current draw, taken from a
uniform distribution. Applying the UT to this case yields only
three future input trajectories that need to be simulated. There
is no guidance to choosing a value for κ when the distribution
is uniform, so we use the suggested value of κ for when the
distribution is Gaussian, which, for a one-dimensional input
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Figure 8. Prediction performance with 10 future input tra-
jectories drawn from a uniform distribution and assuming no
process noise with α = 0.15.
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Figure 9. Prediction performance with 100 future input tra-
jectories drawn from a uniform distribution and assuming no
process noise with α = 0.15.

space, is κ = 2.4 With κ = 2, the UT happens to choose the
three points as the mean of the distribution and its two end-
points, thus naturally capturing the input bounds. The results
are shown in Fig. 10. Comparing to the case where 100 ran-
dom input trajectories were generated, using the UT we are
able to capture approximately the same distribution with only
a fraction of the computational effort. The figure shows the
results from the three sigma points directly, but the distribu-
tion can be reconstructed from this minimal set of samples.
We will show in the following subsection that the UT is able
to do this accurately. In this case the UT provides both the

4A smaller value of κwill bring the sigma points closer together, and a larger
value spreads them out.
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Figure 10. Prediction performance with future input trajec-
tories drawn from a uniform distribution using the unscented
transform and assuming no process noise with α = 0.15.

RUL distribution and its bounds deterministically. Note that
for a bounded distribution one may always choose the end-
points to determine the RUL bounds, however, in this case
the UT does this automatically with the added benefit of be-
ing able to reconstruct the RUL distribution from those two
points and the mean.

4.3. Simulation Results

For a more careful analysis, we ran a set of comprehensive
simulation experiments. In these experiments, by using a sim-
ulation model, we eliminate several sources of uncertainty: (i)
the state at the time of prediction is assumed to be known ex-
actly, (ii) the system model is known exactly, (iii) the process
noise distribution is known exactly, and (iv) the future input
trajectory distribution is known exactly. This focuses the re-
sulting uncertainty to only that associated with the process
noise and the future input trajectories. In each experiment,
the true input trajectory is sampled from the known distribu-
tion, while the algorithm knows only the distribution.

To analyze prognostics performance we use the relative ac-
curacy (RA) metric to characterize the accuracy (Saxena,
Celaya, Saha, Saha, & Goebel, 2010). For RA we use the me-
dian as the measure of central tendency since the RUL distri-
butions are skewed. For spread, we use relative median abso-
lute deviation (RMAD). For each experiment we perform 100
iterations, and average the results over these iterations. We
compute also a computation time metric Tcpu which is com-
puted as the fraction of computation time taken for a predic-
tion tcpu over the true RUL, RUL∗, i.e, Tcpu = tcpu/RUL

∗.

Results with process noise but without input uncertainty are
shown in Table 2. In this case process noise has little effect
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Nv RARUL RMADRUL Tcpu

0 99.42 0.00 5.91× 10−4

10 99.28 1.34 6.75× 10−4

50 99.15 1.47 6.97× 10−4

100 99.02 1.39 7.34× 10−4

Table 2. Prognostics Performance with different values ofNv
and no input uncertainty.

on accuracy, so even when ignoring process noise (indicated
by Nv = 0 in the table) accuracy is pretty good, although the
RMAD is 0 so the true spread is being underrepresented by
the RUL prediction. Even with only 10 samples the predic-
tion spread is quite close to the case with 100 samples (with
a difference of only 0.26 in RA and 0.05 in RMAD), so only
having a about 10 samples is acceptable for this level of pro-
cess noise. As process noise increases, more samples will be
needed to properly cover that space.

We now focus on the effect of the uncertainty in future in-
puts, so eliminate process noise from the simulation. The
actual input current is drawn from a uniform distribution be-
tween 0.75 and 2.00 A. If the prediction algorithm always
selects the mean, 1.375 A, as the future input current, then
the relative accuracy of the first prediction point varies from
about 52-97%. RA is high when the actual current is close to
the mean but low when far from the mean. Because no un-
certainty is taken into account, when the actual current is far
from the mean not only will the accuracy be low, but the pre-
dictions will be of high precision and therefore be presented
as predictions with high confidence, which would be incor-
rect and lead to poor decision-making.

If we instead sample randomly from the input distribution,
the relative accuracy on average does not really change from
when assuming only the mean input. This is because RA is
computed based on the median RUL prediction, and when
the input distribution is sampled enough, then we will get the
correct mean of that distribution, which, because the distri-
bution is symmetric, will correspond to the median RUL pre-
diction. The key difference, however, is that now the RUL
spread is more accurately represented by the predicted RUL
distribution. The true RMAD is around 27%. Table 3 shows
the prediction performance for different values of Nu. RA
is about the same and the prediction spread, as computed by
RMAD, approaches the true spread with around 25 samples
(with about 7 times the computation as when predicting with
only one sample). Using the UT (in which only 3 samples are
needed), the performance is similar with only about 2.6 times
as much computation needed compared to using only a single
sample. Using κ = 2 for the UT, it chooses the mean and the
endpoints of the assumed uniform distribution, so naturally
provides the median and best- and worst-case RULs. Using
the weights of the sigma points we can reconstruct the distri-
bution it represents, which is not possible when just choosing
these values in an ad hoc manner.

Nu RARUL RMADRUL Tcpu

1 62.98 0.00 6.31× 10−4

10 74.57 25.96 2.36× 10−3

25 75.90 27.07 5.39× 10−3

50 78.54 27.50 9.61× 10−3

75 74.31 27.55 1.48× 10−2

100 76.71 27.61 2.08× 10−2

UT 76.77 26.72 1.61× 10−3

Table 3. Prognostics Performance with different values ofNu
and no process noise.

5. CONCLUSIONS

In this paper, we analyzed the sources of uncertainty in prog-
nostics and developed a general model-based prediction al-
gorithm that incorporates this uncertainty to provide EOL and
RUL results that correctly capture the true uncertainty in EOL
and RUL. We also introduced the use of the unscented trans-
form for efficiently sampling from the space of possible fu-
ture input trajectories, which can achieve the same results as
random sampling but at a fraction of the computational effort
(see Table 3).

We applied the approach to both real and simulated lithium-
ion battery data, where end-of-discharge was predicted. Here
it was demonstrated that it is important to realize that for any
source of uncertainty that is ignored in the prediction, even
though in one particular case the result may be accurate, the
actual uncertainty is underrepresented and so is not captur-
ing the right information needed for decision-making. If the
uncertainty is accounted for, on average the accuracy will be
the same as if just average performance is assumed, but the
spread will be correctly represented and the actual system be-
havior will fall within the predicted spread. Since the actual
path the system will take is uncertain, it is best practice to
capture the uncertainty as accurately as possible. It is impor-
tant also not to overestimate the uncertainty. For example,
when defining the space of possible future input trajectories
it is important to constrain these trajectories as much as pos-
sible.

In this paper, we have shown that it is possible, by using the
unscented transform, to estimate the uncertainty in predic-
tions in a deterministic manner and with reduced computa-
tional burden while still keeping the important statistical in-
formation intact. Furthermore, since the uncertainty in future
inputs happens to be uniformly distributed in our example,
the UT method also determines the bounds of the uncertainty,
which can be extremely valuable information in making de-
cisions based on prognostic estimates in order to contain the
risk. Minimizing the computational cost maintains the real-
time application potential of the algorithm without compro-
mising on the quality of prediction. This allows us to move a
step closer towards adapting prediction algorithms, which are
generally inherently stochastic, to meet the needs of current
certification procedures and protocols that require determin-
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istic system outputs. This also lays the foundation to start
investigating other methods that can be used for generalized
situations that do not assume a specific distribution type for
future input uncertainty.

In the future, we will further investigate these issues on other
systems and with additional experimental data. It is also im-
portant to investigate more closely the applicability of the UT
for sampling the input trajectory space in a variety of practical
applications.
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